

Operational Technology for Cybersecurity
Workbook 2

Prepared by:
Chuck Bales

Dr. Kristine Christensen

Developed in partnership with the
National Cybersecurity Training &
Education Center

Welcome to the

IoT Brewing Company!

IoT Brewing Company | Page 1 of 29

 Ready to Clock Back In?

 Congratulations on successfully completing your IoT Orientation and first brewmaster IoT project!

The embedded device that you implemented to open and close the valve on the vessel has greatly

increased productivity and efficiency. Your boss saw how beneficial embedded systems and IoT can be

within the brewing process and has asked you to continue your work in automating a whole process.

For the next project, the brewmaster would like for you to work with the packing and distribution

department on an IoT solution for the beer packaging process. The brewery would like to create three

conveyor lines for packaging the bottles. This will give ample time for the packaging staff to successfully

place the bottles in the crates. To do this, you will need to divert the appropriate number of bottles

down each line in succession. For example, every 24 bottles down the line will cause the conveyor

diverter arm to divert the bottles from one packing station to one of the other two. To implement this

solution, you will approach this in three project stages, each building on the last.

Please note: These exercises are normally accomplished using PLCs but the brewmaster wants to you to

learn more about IoT, to keep costs low, and to benefit from the added functionality of an

interconnected IoT system.

Brief Overview of Required Components

IoT Brewing Company | Page 2 of 29

Each project will provide a list of components that you will need to add to your Tinkercad Circuit

projects. The table below provides a brief description of each component.

Passive InfraRed Motion Sensor (PIR)

▪ PIR Sensors are used to sense motion and can detect
when an object is moved in or out of its range.

▪ These sensors have a 3-pin connection: one for signal,
power, and ground. These pinout connections can vary
depending on the PIR sensor you are using.

▪ The signal connects to a digital pin and the output will
be set to 1 when sensor detects motion and 0 when
there is no motion detected.

▪ Require little power, are inexpensive, and easy to use.

RGB (Red, Green, Blue) LED

▪ RGB LEDs have three LEDs inside the housing which
allows you to mix colors by controlling the power /
brightness of each of the three internal LEDs. Each LED
takes a value from 0 to 255, which allows for the LED
to display any RGB color.

▪ There are 4 pins, one for red, green, blue and the
cathode pin which is connected to ground.

▪ Often used with Arduino's analogWrite() function to
control the power to each of the LEDs.

Relay – SPDT (Single Pole Double Throw):

▪ A relay is an electrical switch that can be programmed
and controlled by the Arduino microcontroller.

▪ It is used to control several circuits with one signal or
when a high power circuit needs to be controlled by a
low power signal.

▪ Referred to as an A/B switch because of its single input
and ability to connect to and switch between two
outputs.

▪ Has three connections – the input common, Normally
Open (NO), and Normally Closed (NC).

IoT Brewing Company | Page 3 of 29

Micro Servo

▪ Micro servos are small servo motors.
▪ A servo motor actuator can move to a position

accurately and are controlled by sending electrical
pulses from the Arduino. These pulses tell the motor
what position to move, making them ideal
components for electronic applications.

▪ The shaft on servo motors can be positioned at various
positions between 0 and 180 degrees.

▪ The servo motor has three connections: power,
ground, and signal. The signal pin should be connected
to the digital pin on the Arduino board.

▪ You will need to use the Servo library to allow the
Arduino board to control the servo motor.

IoT Brewing Company | Page 4 of 29

Pre-Project Activity 1: Advanced Arduino Programming

Using Arduino programming, a simplified

version of C++, you were able to

successfully complete the tasks assigned

to you by the brewmaster.

Since you did so well with the tank project, the

brewmaster has assigned new tasks which require

knowledge of advanced programming concepts. You will

need to understand and use logical operators, switch

case statements, and even write your own custom

functions. Each programming concept will be briefly

discussed.

Logical Operators

Logical operators are used to control program flow and when decisions need to be made on multiple

conditions. These are called compound conditional statements. The common logical operators include

AND, OR, and NOT. Logical operators use Boolean logic and return either a true or false value.

The table below provides a brief description and example of each of the operators.

Operator
Name

Operator Description Example resulting in True when
using x = 5 and y = 2

AND && Returns true only when both conditions are
true.

(x > 1) && (y < 9)

OR || Returns true if either of the two conditions
are true. It also returns true if both
conditions are true.

(x > 1) || (y > 9)

NOT ! Results in a true if the operand is false. This
reverses the value of the expression. If the
condition is true than the NOT operator will
return a value of false.

!(x < 1)

IoT Brewing Company | Page 5 of 29

Switch Case Statements

Like if statements, the switch case is a conditional statement used to control the flow of programs and

is used to specify when code should be executed after various conditions are met. The switch statement

tests the value of a variable, located within parenthesis after the switch keyword, against a list of the

values called cases. When a matching case is found, the statement(s) following the matched case is

executed. The keyword break is typically included at the end of each case's statements and is used to

break the program and exit the switch to avoid continuing the execution of the following expressions,

known as "falling-through", until a break or the end of the switch statement is reached. When the

default case is used, the statements following will be executed if none of the cases match the

variable value. Note: this type of conditional statement is only suitable for a limited number of cases.

The Switch Case Flow Diagram below illustrates how this conditional statement works. To the right of

the diagram, you will see sample syntax and code for a Switch Case.

switch (var) {

 case label:

 // statements

 break;

 case label:

 // statements

 break;

 default:

 // statements

 break;

}

Switch/Case Syntax

int count = 2;

switch(count) {

 case 1:

 Serial.print("Count=1");

 break;

 case 2:

 Serial.print("Count=2");

 break;

 default:

 Serial.print("Default");

 break;

}

Switch/Case Sample Code

Output: Count=2

IoT Brewing Company | Page 6 of 29

Functions and User Defined Functions

A function is a block of organized code that performs a defined task which the programmer can call in a

program as well as return a value. Functions make your code reusable and are used when the same code

needs to be run multiple times during a program's execution. Every Arduino sketch program has two

special functions, the setup() and loop(). Arduino programing language has built-in functions that you

can use to perform computations and control the Arduino board. For more information about the

various functions available, check out the Arduino language reference by visiting the following website:

https://www.arduino.cc/reference/en/

Advantages of Functions

Using functions provides the program with several advantages. Functions can keep a sketch program

smaller by eliminating repetitive statements. If the code needs to be changed, it only needs to be

modified in one function as opposed to multiple lines of code. Troubleshooting is also helped since the

programmer will only need to look at one place to debug the functionality. Functions also provide

modularity to a program so they can be used by other programs.

Anatomy of a Function

Example of calling the sumXY function in a program and passing arguments.

int sumXY (int x, int y) {

 int z = 0;

 z = x+y;

 return z;

}

Returned datatype. If nothing

needs to be returned, use "void"

Function name

Function body: Statements which define what the

function does

Arguments: parameters (data) passed to the function

Return statement - notice how the datatype matches the function data type

void loop () {

 int result = 0;

 result = sumXY(5,6);

}

Function Call

IoT Brewing Company | Page 7 of 29

Writing Your Own Function (User Defined Functions)

1. Determine the function type.

a. If the function does not need to return a value, then you will need to declare the

function type as void. See the example below:

example: void functionName(){…}

b. If the function needs to return a value, then declare the datatype of the return value.

The data type can be int, long, float, or Boolean.

example: int gradeFunction(){…}

2. Determine whether data needs to be passed to the function. The data passed to the function

are referred to as parameters. Parameters act like a placeholder, when the function is called,

the values are passed to them. The parameters are included in parentheses following the

function name. If you do not need to pass values to the function, then the parentheses will be

empty.
 example: int gradeFunction(int grade){…}

3. Write the statements that you want the function to perform. The function body contains the

statements that tells the function what to do. These statements are contained within the curly

brackets.

example:

int gradeFunction(int grade){

// statements

}

Calling a Function

To call a function type its name in the program where you it to run, add parentheses after the function

name, and include any parameters that the function requires inside the parentheses. When you call the

function, the program leaves the 'main' program and executes the first line and all instructions inside

the function. Once all statements have been executed, the program flow control leaves the function and

returns to the next line after the function call.

 example: gradeFunction(90);

IoT Brewing Company | Page 8 of 29

Brewmaster Projects

The brewmaster has asked you to design IoT devices aimed at improving the brewing process. You will

be designing and prototyping these devices using Tinkercad. Your job will be to develop new automated

processes related to packaging the bottles after they are filled:

Brewmaster Project 1. Use a PIR sensor to count the number of bottles traveling down the
conveyor.

Brewmaster Project 2. Add a servo to control the conveyor diverter arm to steer the bottles
into one of three packaging stations.

Brewmaster Project 3. Add a light over each packaging station to signal where bottles are
being diverted.

IoT Brewing Company | Page 9 of 29

Brewmaster Project 1

Instructions:

You have been asked by the brewmaster to use a sensor to keep track of the number of bottles

that move down the line. This will help in the future as you will direct the bottles to the

appropriate packaging station. The brewmaster has provided a PIR sensor for you to get

started.

Brewmaster Project 1 Components, Wiring, and Code

Make It

For this project, you will need the following components.

▪ Arduino Uno

▪ Small Breadboard

▪ 1 x PIR Motion Sensor

▪ Jumper Wires

Input / Output Devices

Input: PIR Sensor
Output: Serial Monitor

Helpful Wiring Notes:

▪ The green wire is the signal wire, the black wire is ground,

and the red wire is for power.

PIR Sensor

Bottle Flow

IoT Brewing Company | Page 10 of 29

Wire It

Use the schematic and circuit illustration below to wire this project in Tinkercad.

IoT Brewing Company | Page 11 of 29

Code It

 Below is the code you will need to add to the project in order for it to work. The program

will use a PIR sensor to count the number of bottles passing it. Add comments to this code

so that its purpose and functions can be clearly understood by

 other readers.

1 int bottleCount = 0; Declare and initialize variables
2 int PIRstate = LOW; Initialize the state of the sensor as inactivate.
3
4 int const PIRpin = 2; Declare a constant for the digital pin (PIR sensor)
5
6 void setup()
7 {
8 pinMode(PIRpin,INPUT); Set the I/O status of the digital pin
9 Serial.begin(9600); Initialize serial port for communication
10 }
11
12 void loop()
13 {
14 if((PIRstate == LOW) &&(digitalRead(PIRpin) == HIGH)) If the sensor is inactive and a bottle enters the

motion field
15 {
16 bottleCount++; Increase the bottle count by one
17 PIRstate = HIGH; Change the state of the sensor to active
18 }
19 else if((PIRstate == HIGH) && (digitalRead(PIRpin) == LOW)) Else if the sensor is active and there is no bottle

in the field
20 PIRstate = LOW; Reset sensor state to inactive
21
22 Serial.println(bottleCount); Print bottle count to serial monitor
23
24 delay(10); Delay for sensor to operate (10 milliseconds)
25 }

Working with the PIR Sensor

Events PIRstate PIRpin bottleCount

1. No bottle Sensor does not see anything
(change state from HIGH to LOW)

No signal received by
Arduino (LOW)

+0

2. Bottle moves into the field Sensor sees something
(change state from LOW to HIGH)

Signal is received by
Arduino (HIGH)

+1

3. Bottle moves out of field Sensor does not see anything
(change state from HIGH to LOW)

No signal received by
Arduino (LOW)

+0

4. Return to Step 1

IoT Brewing Company | Page 12 of 29

Test It
Once the wiring has been completed and the code has been successfully entered you
are ready to start the simulation. To test your code, make sure that you have the
Code window open and click on the Serial Monitor so that you can see the PIR
motion sensor output.

Run the simulation and click on the PIR sensor in Tinkercad. You will see a circle,
representing a bottle, in a green cone (range) in front of the sensor. Each time you
drag the circle inside the cone it represents the
bottle moving past the sensor. Click on the circle
and drag it within the green cone. Each time it
passes through the cone the bottle count will
increase by one.

Note: If you do not see the circle or cone in front
of the PIR sensor you may need to zoom in or
out to resize the design space.

How did it go?
Congratulations, you now know how to count the number of bottles that pass the
PIR motion sensor using an Arduino and programming. Save your work and now you
are ready to proceed to Project 2.

Notes

IoT Brewing Company | Page 13 of 29

Brewmaster Project 2

Instructions:

The brewmaster would now like you to control the conveyor diverter arm to send the

appropriate number of bottles to one of the three packaging stations. Since you’ve used the

PIR sensor to count bottles you can take advantage of it and implement a servo to control the

diverter arm. Packaging size can vary from a 6, 12, or 24-pack of bottles. Currently, the

brewery is packaging 24 bottles at a time. You will now need to control the servo in 60 degree

increments every time 24 bottles pass the PIR sensor.

Brewmaster Project 2 Components, Wiring, and Code

Make It

Add the following components to your circuit

▪ 1 x Micro Servo

▪ 1 x 100 μF Capacitor

▪ Jumper wires

Input / Output Devices

Input: PIR Motion Sensor
Output: Micro Servo

Helpful Wiring Notes:

▪ The orange wire is the signal wire, the brown wire is

ground, and the red wire is for power.

Conveyor arm top view

IoT Brewing Company | Page 14 of 29

Wire It

Use the schematic and circuit illustration below to wire to add the additional components

to your breadboard.

IoT Brewing Company | Page 15 of 29

Code It

Add the code highlighted bold below. The code additions will allow you to control the

servo to change diverter arm to send the appropriate number of bottles to each

packing station.

1 #include <Servo.h> Import library for servo
2

3
int flipperPos = 0; Declare and initialize variable for flipper

angle (degrees)
4 int bottleCount = 0;
5 int PIRstate = LOW;
6
7 int const PIRpin = 2;
8 int const flipperPin = 9; Declare constant for servo pin

9
int const maxBottle = 24; Declare constant for max bottle count per

chute
10
11 Servo flipper; Create servo object named flipper
12
13 void setup()
14 {
15 flipper.attach(flipperPin); Attach servo to servo pin
16 pinMode(PIRpin,INPUT);
17 Serial.begin(9600);
18
19 flipper.write(0); Initialize servo starting position (0

degrees) 20 }

21
22 void loop()
23 {

24
 if ((PIRstate == LOW) && (digitalRead(PIRpin)

== HIGH))

25 {
26 bottleCount++;
27 PIRstate = HIGH;
28 }

29
 else if ((PIRstate == HIGH) &&

(digitalRead(PIRpin) == LOW))

30 PIRstate = LOW;
31
32 Serial.println(bottleCount);
33
34 if (bottleCount == maxBottle) If the maximum number of bottles per

chute is reached 35 {

36
 turn(); Call the turn() function to move the

conveyor arm
37 bottleCount = 0; Reset the bottle count to zero
38 }

IoT Brewing Company | Page 16 of 29

39
40 delay(10);
41 }
42
43 void turn() Turn() function – this function will rotate

the flipper in 30-degree increments (0
degrees, 30 deg, 60 deg)

44
{

45
 if (flipperPos <= 60) If the flipper is less than or equal to 30

degrees

46
 flipperPos += 30; Rotate servo arm 30 degrees

47 else Else if the flipper is greater than 60
degrees reset servo to start position (0
degrees)

48 flipperPos = 0;

49

50
 flipper.write(flipperPos); Move the servo arm to the current flipper

angle

51
} Return back to the main loop of the

program

IoT Brewing Company | Page 17 of 29

Program Flow

IoT Brewing Company | Page 18 of 29

Test It
Once the additional components and code have been added, test to see whether the
servo moves after 3 bottles pass the PIR motion sensor. Hint: change the variable
value of maxbottle to 3.

How did it go?
Congratulations, you now know how to divert the bottles to each packing station
based on count. Save your work and now you are ready to proceed to Project 3.

Notes

IoT Brewing Company | Page 19 of 29

Brewmaster Project 3

 Instructions:

As a safety feature, the brewmaster would like to add a light above each packaging station

which will indicate which station the bottles are being diverted to. The lights should turn

green when bottles are being diverted to that station and red when they are not. For this,

you will use an RGB LED which can be set to green or red.

Brewmaster Project 3 Components, Wiring, and Code

Make It

Add the following component to your circuit:

▪ 1 x Ultrasonic Distance Sensor (Parallax Ping)

▪ Jumper wires

Input / Output Devices

Input: Ultrasonic distance sensor,
pushbutton
Output: RGB LED, Micro Servo

IoT Brewing Company | Page 20 of 29

Wire It

Use the schematic and circuit illustration below to wire to add the additional components to

your breadboard.

Please Note: The RGB LED Pin for the blue

color is not connected in this circuit since

we are not using a blue LED color.

IoT Brewing Company | Page 21 of 29

 A Closer Look: Relay Illustration

IoT Brewing Company | Page 22 of 29

Code It

Add the highlighted code. The code changes the color of the RGB LED for each of the

three packing stations. The LED will be green when bottles are being diverted to a packing

station and red when they are not.

1 #include <Servo.h>

2

3 int flipperPos = 0;

4 int bottleCount = 0;

5 int PIRstate = LOW;

6

7 int const PIRpin = 2;

8 int const flipperPin = 9;

9 Int const maxBottle = 3;

10

11 int const rightLED = 3; Declare constants for
RGB LED pins 12 int const centerLED = 4;

13 int const leftLED = 5;
14
15 Servo flipper;
16
17 void setup()
18 {
19 flipper.attach(flipperPin);
20 pinMode(PIRpin,INPUT);
21
22 pinMode(rightLED,OUTPUT); Set the I/O status of the

digital pins for the RGB
LEDs

23 pinMode(centerLED,OUTPUT);

24 pinMode(leftLED,OUTPUT);

25 Serial.begin(9600);
26
27 flipper.write(0);
28 color(); Call the color() function
29 }
30
31 void loop()
32 {
33 if ((PIRstate == LOW) &&(digitalRead(PIRpin) == HIGH))
34 {
35 bottleCount++;
36 PIRstate = HIGH;
37 }
38 else if((PIRstate == HIGH)&&(digitalRead(PIRpin) ==

LOW))

39 PIRstate = LOW;
40
41 Serial.print(flipperPos);
42 Serial.print(" ");
43 Serial.println(bottleCount);

IoT Brewing Company | Page 23 of 29

44
45 if (bottleCount == maxBottle) If the maximum number

of bottles per chute is
reached 46 {

47 turn();
48 color(); Call the color() function
49 bottleCount = 0;
50 }
51
52 delay(10);
53 }
54
55 void turn()
56 {
57 if (flipperPos <= 60)
58 flipperPos += 30;
59 Else
60 flipperPos = 0;
61
62 flipper.write(flipperPos);
63 }
64
65 void color() Color() function – this

function will alternate
the color of the RGB LEDs
based on the angle of the
flipper

66 {

67 digitalWrite(rightLED , HIGH); Sets all LEDS to RED
68 digitalWrite(centerLED , HIGH);
69 digitalWrite(leftLED , HIGH);
70
71 switch (flipperPos) Sets correct LED to

GREEN by
72 {
73 case 0: If the flipper angle is 30

degrees turn off the
74 digitalWrite(rightLED ,LOW);
75 break;
76
77 case 30:
78 digitalWrite(centerLED ,LOW);

 break;

 case 60:
 digitalWrite(leftLED ,LOW);
 break;
 }
 }

IoT Brewing Company | Page 24 of 29

Color Function Flow

IoT Brewing Company | Page 25 of 29

Test It
Once the additional components and code have been added, test to see whether the
LEDs change color to red or green to signal where the bottles are being diverted.

How did it go?
Congratulations, you used relays to control the color of the RGB LED indicator so that
workers will know which packing station bottles are being directed.

Notes

IoT Brewing Company | Page 26 of 29

Looking for Additional Challenges?

Project 1: Add a serial output to calculate the bottle speed.

Project 2: Add a serial output showing which chute is active.

Project 3: Add additional sensors and actuators to improve the process.

Making the Brewmaster Projects Internet of Things Devices

Tinkercad is limited in its simulation capabilities and does not provide any devices to simulate an IoT

device. However, there are only minor changes and adjustments that need to be undertaken to create

fully IoT devices from the Brewmaster Projects. To make the Brewmaster Projects true Internet of

Things devices requires the following modifications:

1. Switch the Arduino Uno microcontroller with a board capable of communicating with a network

such as the Arduino Nano 33, Arduino MKR1000, Arduino MKR WiFi1010, or similar. In some

cases, where the power of the IoT board is limited to 3.3 V, slight alteration to the circuit may be

necessary such as changing the resistor values.

2. Utilize an IoT cloud service, such as the Arduino IoT Cloud, to create widgets or apps to interface

with the IoT device. The button and LED used in the Brewmaster Projects may be duplicated on

the IoT cloud service so that activations can be performed, and alerts can be visualized, via the

service page or app.

3. Add programmatic elements to initiate communication with a webpage or IoT cloud service.

For more information visit the Arduino IoT Cloud homepage: https://www.arduino.cc/en/IoT/HomePage

IoT Brewing Company | Page 27 of 29

 Glossary of Terms

Actuator

A type of component that changes energy into motion. Motors are a type of
electrical actuator.

Analog

Something that can continuously vary over time.

Anode

The positive end of a diode (remember that an LED is a type of diode).

Arduino

An open-source programmable microcontroller designed to allow users to
prototype electronics projects quickly and easily.

Boolean

A datatype that indicates something binary, such as on or off, 1 or 0.

Breadboard

A prototyping platform that allows you to build electronic circuits.

Capacitor

A component that can hold an electrical charge.

Cathode

The negative end of a diode.

Comments

Statements that are used to help others understand the purpose of your code.

Constants

A named identifier that cannot change its value in a program.

Circuit

A circular path from a power supply, through a load, and then back again to
the other end of the power supply. Current flows in a circuit only if it is closed,
that is, if the outgoing and return path are both uninterrupted (or closed). If
either path is interrupted (or open) then current will not flow through the
circuit.

Digital

A system that deals with discrete values (typically 1s & 0s)

Function

A block of code that executes a specific task.

Internet of

Things

A network of connected devices enabling them to communicate over the
internet.

Library

A software extension of the Arduino API that expands the functionality of a
program.

Light emitting

diode (LED)

A type of diode that lights up when electricity passes through it. LEDs are
polarized components that only allow electricity to flow through them in one
direction.

Microcontrollers

The brains of the Arduino, this is a small computer that you will program to
listen for, process, and display information.

IoT Brewing Company | Page 28 of 29

Ohms (Ω)

Unit of measurement of resistance. Represented by the omega symbol.

Polarized

The leads of polarized components (e.g. LEDs or capacitors) have different
functions, and thus must be connected the right way. Polarized components
connected the wrong way might not work, might be damaged, or might
damage other parts of your circuit. Non-polarized components (e.g. resistors)
can be connected either way.

Prototyping

An initial stage of product development in which a working model is
constructed and tested before the final product is manufactured.

Pull-down

Resistor

A pull-down resistor (or pull-up resistor) is a resistor used to ensure a known
state for a digital signal. It is typically used with buttons and switches to
ensure an errant high state is not read when the button or switch is not
pressed.

Resistor

A measure of how efficiently a material will conduct electricity

Sensor

A component that measures one form of energy (like light or heat or
mechanical energy) and converts it to voltage or current.

Servo

Servo motors are rotary actuators that can move to a position accurately and
are controlled by sending electrical pulses from the Arduino.

Sketch

The term given to programs written in the Arduino IDE.

Switch

A component that can open or close an electrical circuit.

Ultrasonic

Distance Sensor

The Ultrasonic Distance Sensor is an input sensor that measures the non-
contact distance between moving or stationary items.

Valve

A device for controlling the passage of fluid or air.

Variables

A datatype that stores values which are likely to change as your program runs.
A variable’s type depends on the type of information you want to store, and
the maximum size of the information.

 * Many of the terms included in the Glossary were taken from the Arduino Glossary (https://www.arduino.cc/glossary/en/)

IoT Brewing Company | Page 29 of 29

 Resources & References

Arduino Resources

▪ Arduino.cc - https://www.arduino.cc/

▪ What is Arduino? - https://www.arduino.cc/en/Guide/Introduction

▪ Digital Pins - https://www.arduino.cc/en/Tutorial/DigitalPins

▪ Arduino IoT Cloud - https://www.arduino.cc/en/IoT/HomePage

